Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
18 | 05 | 2024
2023, 07 July

DOI: 10.14489/td.2023.07.pp.051-057

Balabanov P. V., Rayzanov I. V.
INVESTIGATION OF THE RELIABILITY OF THERMAL CONTROL OF THE RESOURCE OF PROTECTIVE PROPERTIES OF PRODUCTS BASED ON CHEMISORBENTS ON A POROUS FIBROUS MATRIX
(pp. 51-57)

Abstract. The method and system of thermal control of the resource of protective properties of installations used for air regeneration in enclosed spaces are considered. The main components of the installations are КО2-based chemical sorbents deposited on inert fibrous materials, which absorb carbon dioxide and water vapor released during breathing as a result of an exothermic reaction and enrich the air with oxygen. The method involves measuring the temperatures of the surfaces of regenerative elements (chemisorbents in the form of plates) and the power of an additionally used flat heating element, the temperature of which is controlled equal to the temperature of the chemisorbent. According to the measurement results, two dimensionless parameters are calculated, depending on the power and temperature of the heater, characterizing the life of the protective properties of regenerative elements. Experimental studies of the thermal control method and system were carried out under the following operating conditions of the air regeneration unit: CO2 concentration in the regenerated air 1...4 %, relative humidity 85 ± 10 %, air temperature 20 ± 5 ºС. The ranges of values of dimensionless parameters used in the proposed algorithm for making a decision on the replacement of regenerative elements based on the results of thermal control are found.

Keywords: resource of protective properties, chemosorbent, air regeneration unit, thermal control system.

P. V. Balabanov, I. V. Ryazanov (Tambov State Technical University, Tambov, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Putin S. B., Samarin V. D. (2010). Integrated system of chemical safety in Russia: theoretical foundations and principles built. Moscow: Mashinostroenie-1. [in Russian language]
2. Grigor'ev A. I., Baranov M., Sinyak Yu. E. et al. (2002). The results of the operation of the complex of life support systems of the space station "Mir". Proceedings of the XII Conference on Space Biology and Aerospace Medicine, pp. 308 – 309. Moscow. [in Russian language]
3. Samsonov N. M., Bobe L. S., Gavrilov L. I. et al. (2008). Experience in the operation of regeneration life support systems for crews on space stations "Salyut", "Mir" and the ISS. Aviakosmicheskaya i ekologicheskaya meditsina, Vol. 42 (6-1), pp. 10 – 12. [in Russian language]
4. Grigorenko R. I., Komarova A. D., Grunskiy V. N. (2020). Block-cellular sorption-catalytic systems for air regeneration in closed spaces. Uspekhi v himii i himicheskoy tekhnologii, Vol. XXXIV (6), pp. 20 – 22. [in Russian language]
5. China Hu Weichun., Wang Yunquan., Guan Zenglun et al. Potassium superoxide air regenerating device for emergent risk avoiding under coal mines. Patent No. CN102874760A.
6. Krimshteyn A. A., Plotnikova S. V., Konovalova V. I., Putin B. V. (1992). Simulation of the operation of insulating apparatuses on chemically bound oxygen. Zhurnal prikladnoy himii, Vol. 65 (11), pp. 2463 – 2469. [in Russian language]
7. Holquist J., Koenig P., Tozer S. et al. (2013). Atmosphere Regeneration for the Transport of Rodents to and from the ISS – Design Trades and Test Results. ICES International Conference on Environmental Systems At, Vol. AIAA. Vail.
8. Gladyshev N. F., Gladysheva T. V., Dvoretskiy S. I. (2017). Nanostructured sheet chemisorbents for means of cleaning and regenerating air in hermetic habitable objects. Himicheskaya bezopasnost', Vol. 1 (1), pp. 62  70. [in Russian language]
9. Holquist J., Graf J. C., Klaus D. M. (2014). Characterization of Potassium Superoxide and a Novel Packed Bed Configuration for Closed Environment Air Revitalization. 44th International Conference on Environmental Systems At. Tucson.
10. Panahi A., Hassanzadeh A., Moulavi A. (2020). Design of a low Cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sensing and Bio-Sensing Research. DOI: 10.1016/j.sbsr.2020.100378.
11. Vaught Ch., Brnich M., Wiehagen W. J. et al. (1993). An Overview of Research on Self-Contained Self-Rescuer Training. United States Department of the Interior. Bulletin 695.
12. Liu H., Allen J., Zheng D., Chen F. (2019). Recent development of respiratory rate measurement technologies. Physiological Measurement, Vol. 40 (7).
13. Lerman J., Feldman D., Feldman R. et al. (2016). Linshom respiratory monitoring device: a novel temperature-based respiratory monitor. Journal Canadien D'Anesthésie, Vol. 63, pp. 1154 – 1160.
14. Sathyamoorthy M., Lerman J., Amolenda P. G. et al. (2019). Tracking tidal volume noninvasively in volunteers using a tightly controlled temperature-based device. The Clinical Respiratory Journal, Vol. 14 (12), pp. 260 – 266.
15. Preiss D., Drew B. A., Gosnell J. et al. (2018). Linshom thermodynamic sensor is a reliable alternative to capnography for monitoring respiratory rate. Journal of Clinical Monitoring and Computing, Vol. 32 (6), pp. 133 – 140.
16. Fel'dman R. I., Tutova E. G., Gisina K. B. Sorption process control method. Patent No. 744321. USSR. [in Russian language]
17. Magnante P. C. Respirator cartridge end-of-service life indicator. US Patent No. US4146887.
18. Kondrashov S. N., Soloshin S. V., Dubovitskiy N. A. et al. Method for automated non-destructive testing of thermophysical properties of filter-absorbing systems. Ru Patent No. 2419783. Russian Federation. [in Russian language]
19. Ryazanov I. V., Balabanov P. V., Egorov A. S. (2022). Thermal control system for the resource of protective properties of chemisorbent plates based on alkali metal superoxides. Pribory, 267(9), pp. 23 – 30. [in Russian language]
20. Ryazanov I. V., Balabanov P. V. (2020). Method and setup for laboratory testing of the resource of protective properties of a chemisorbent plate. Information technologies in control and modeling of mechatronic systems (ITUMMS 2020): 2nd scientific and practical conference, pp. 15 – 19. Tambov. [in Russian language]
21. Balabanov P. V., Ponomarev S. V. (2011). Study of the kinetics of the air regeneration process. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, Vol. 7 (1), pp. 80 – 84. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2023.07.pp.051-057

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования