Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
18 | 12 | 2025
2024, 10 October

DOI: 10.14489/td.2024.10.pp.059-064

Grinkrug M. S., Andrianov I. K., Kara Bally M., Tkacheva Yu. I.
SYSTEM FOR REGISTERING CRACKS IN THE BLADES OF A GAS TURBINE ENGINE USING AN IONIZING SUBSTANCE IN NON-STATIONARY CONDITIONS
(pp. 59-64)

Abstract. The study is devoted to the problem of detecting cracks in the blades of gas turbine engines using a damage registration system in non-stationary conditions. The principle of operation of the system is based on the manifestation of the ionizing properties of the active substance in the system of shell capsules at high temperatures. The study examines the physico-chemical processes that occur with the active substance in the capsule when it is heated to operating temperatures. A mathematical dependence is proposed to determine the mass of the active substance to be placed in a thin-walled capsule so that the system can detect cracks of a certain width. The obtained ratio allows us to take into account the gas parameters in the turbine stage at the location of the blade, the strength characteristics of the thin-walled capsule material and the thickness of the capsule shell. An estimate of the minimum width of the detected crack is presented under certain technological constraints. According to the results of the study, with an increase in the limiting stress of the capsule shell material, the required destructive pressure in the capsule increases, which leads to an increase in the degree of filling of the capsules with an ionizing substance.

Keywords: gas turbine engine blade, damage detection system, ionizing agent.

M. S. Grinkrug, I. K. Andrianov, M. Kara Bally, Yu. I. Tkacheva (Komsomolsk-na-Amure State University, Komsomolsk-na-Amure, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Getsov L. B., Semenov A. S., Grishchenko A. I. et al. (2017). Long-Term Strength Determination for Cooled Blades Made of Monocrystalline Superalloys. Thermal Engineering, 64(4), 280 ‒ 287. DOI: 10.1134/S0040601517040048
2. Getsov L. B., Rybnikov A. I., Dobina N. I., Dashunin N. V. (2011). Specific Features Relating to Thermal Fatigue Rupture of the Blade Materials of Gas Turbine Units. Thermal Engineering, 58(9), 736 ‒ 740. DOI: 10.1134/S0040601511090047
3. Sadowski T., Golewski P. (2016). Cracks path growth in turbine blades with TBC under thermo – mechanical cyclic loadings, 492 – 499. Lublin: Lublin University of Technology.
4. Aleksandrova N. D. (2015). Corrosion of gas turbine turbine blades and a review of protection methods. Molodezhniy nauchno-tekhnicheskiy vestnik, (2). [in Russian language]
5. Kara Balli M., Grinkrug M. S., Tkacheva Yu. I. (2019). Method for detecting microcracks in blades of operating gas turbine engines. Youth and science: current problems of fundamental and applied research: Materials of the II All-Russian National Scientific Conference of Students, Postgraduate Students and Young Scientists: in 4 parts. Part 3, 237 – 240. Komsomolsk-on-Amur: Komsomol'skiy-na-Amure gosudarstvenniy universitet. [in Russian language]
6. Grinkrug M. S., Popovskiy A. V. Method for diagnosing incipient defects. Ru Patent No. 2168724. Russian Federation. [in Russian language]
7. Carl V., Becker E., Sperling A. (1998). Thermography inspection system for gas turbine blades. 7th European Conference on non-destructive testing, Copenhagen, 2658 – 2665. Copenhagen.
8. Huang С. (2021). Analysis Method of Fault Diagnosis of Turbine Blades for Aero Engines. Male.
9. Zhiritskiy G. S., Lokay V. I., Maskutova M. K. (1963). Gas turbines of aircraft engines. Moscow: Oborongiz. [in Russian language]
10. Nazolin A. L., Polyakov V. I., Gnezdilov S. G. (2020). Diagnostics of the integrity of shaft lines of powerful turbine units using torsional vibrations. Teploenergetika, (1), 32 – 43. [in Russian language] DOI: 10.1134/S0040363620010051
11. Kovalev I. A., Rakovskiy V. G., Isakov N. Yu., Sandovskiy A. V. (2016). Development and improvement of operational diagnostic systems produced by OJSC NPO TsKTI for turbine units of thermal power plants and nuclear power plants. Teploenergetika, (3), 15 ‒ 20. [in Russian language] DOI: 10.1134/S0040363616030048
12. Andrianov I. K., Grinkrug M. S., Kara Balli M. (2024). Development of an approach to detecting cracks in blades of aircraft gas turbine engines at operating conditions. Vestnik MGTU im. N. E. Baumana. Seriya: Mashinostroenie, 148(1), 4 – 20. [in Russian language]
13. Andrianov I. K., Chepurnova E. K. (2023). Optimal Distribution of Capsules with Active Substance for the Crack Detection System in a Turbine Blade. CIS Iron and Steel Review, 26, 98 ‒ 104. DOI: 10.17580/cisisr.2023.02.16
14. Bulygin V. S. (2012). Heat capacity and internal energy of van der Waals gas. Moscow: MFTI. [in Russian language]
15. Kikoin I. K. (1976). Tables of physical quantities. Moscow: Atomizdat. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2024.10.pp.059-064

and fill out the  form  

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования