Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Archive
27 | 04 | 2024
2014, 01 January

DOI: 10.14489/td.2014.01.pp.033-039

 

Saulina E.V., Esipov Yu.V. 
METHOD FOR DISTINCTION OF STRESS-STRAIN CONDITION STATUS MODELS OF INTEGRITY CONSTRUCTION BY DEFORMATION IMAGES
(pp. 33–39)

Annotation. With the help of test periodic welded frame dummies, on which have been pasted super-broad-band (from 10–2 up to 108 Hz) ferroelectric micro-sensing transducers on the basis of thin films Pb (Zr 0,53 Ti 0,47) О3 thickness (~2,0) micron with bonding pad 0,8 mm2, have been developed and approved a way of shock testing and identification is intense – strained conditions of steel designs. The method algorithm is included: 1) the serial shock-excitation with build-up of an force impact impulse; 2) registration of dynamic deformation responses with the help of the sensing transducers pasted on dummy; 3) the Fourier analysis of responses and construction of series of nonlinear and linear areas of deformation images; 4) extraction of diagnostic attributes and informative parameters for discrimination of extent of stress level and (or) damage of integral design

Keywords: сomplex designs, parameters of stress level, deformation vibrations, the Fourier an image, nonlinear dynamic, magnetic method, ferroelectric sensing transducers, Structural Health Monitoring

 

E. V. Saulina 
Donskoy state technical University, Rostov-on-Don, Russia. E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Yu. V. Esipov 
Southern scientific center of RAS, Rostov-on-Don, Russia

 

 

1. Vatul'ian A. O., Solov'ev A. N. (2007). Ob identifikatsii predvaritel'nogo napriazhennogo sostoianiia (About the identifica-tion of preliminary stress-strain state). Dinamika tekhnologicheskikh sistem: trudy VIII Mezhdunarodnoi konferentsii (Dynamics of technological systems: proceedings of the VIII International conference). Rostov-On-Don: DGTU, pp. 19 – 25.
2. Voronkov V. N. (2005). Method of solution of eigenvalue problems for complex linear systems. Mekhanika tverdogo tela, (4), pp. 178 – 187.
3. Mukhortov V. M. (2007). Heterostructures on the basis of ferroelectric nano-sized films: synthesis, properties and application. Nanotekhnika, 3(11), pp. 59 – 72.
4. Golovanov A. I. (2009). Konechno-elementnoe modelirovanie bol'shikh uprugoplasticheskikh deformatsii v terminakh glavnykh udlinenii. (Finite element modeling of large elasto-plastic deformations in terms of the major elongations). Problemy nelineinoi mekhaniki deformiruemogo tverdogo tela: trudy 2-i Mezhdunarodnoi konferentsii (Problems of non-linear mechanics of deformable solid: proceedings of the II International conference), Kazan': Kaz. GU, pp. 125 – 127.
5. Grigor'ev V. G. (2000). Research methodology of dynamic properties of composite elastic and fluid elastic systems. (PhD dissertation), Moscow.
6. Grudev I. D. (2005). The stability of the core elements comprising steel structures. Moscow: MIK.
7. Esipov Iu. V., Mukhortov V. M., Poida I. I. (2010). Esti-mation of the form of state of framed structures elements on the basis of registration of the deformation response of serial impact excitations. Defektoskopiia, (7), pp. 76-81.
8. Esipov Iu. V. (2009). Test rig for the study of bending vibrations of designs patterns by contactless excitation. Izmeritel'naia tekhnika, (12), pp. 44 – 48.
9. Esipov Iu. V. (2013). An experimental approach to build a spectral criterion for the diagnosis of periodic crucial construction on the basis of ferroelectric strain gauges. Prikladnaia mekhanika i tekhnicheskaia fizika, 54(2), pp. 190 – 195.
10. Esipov Iu. V., Mukhortov V. M. (2009). Integral dynamic deformation sensors based on thin ferroelectric films for monitoring of complex mechanical systems. Zhurnal tekhnicheskoi fiziki,51(1), pp. 78 – 81.
11. Esipov Iu. V., Mukhortov V. M., Kalinchuk V. V. (2008). The test facility for the analysis of deformation models of three-dimensional structures. Izmeritel'naia tekhnika, (10), pp. 15 – 24.
12. Ivanov V. I., Vlasov I. E. (2002). Several problems of non-destructive testing. Defektoskopiia, (6), pp. 82 – 93.
13. Lebedev V. L., Semenov V. A., Soldatov A. Iu. (2009). Analiz ustoichivosti sterzhnevykh konstruktsii s uchetom fizicheskoi nelineinosti. (Stability analysis of framed structures with physical nonlinearity taken into account). Problemy nelineinoi mekhaniki deformiruemogo tverdogo tela: trudy 2-i Mezhdunarodnoi konferentsii (Problems of non-linear mechanics of deformable solid: proceedings of the II International conference), Kazan': Kaz. GU, pp. 247 – 248.
14. Makhutov N. A. (2005). Structural strength, resource and technogenic safety: in 2 parts. Novosibirsk: Nauka.
15. Balitskii F. Ia., Barkov A. V., Sokolova A. G. (2005). Handbook. Nondestructive testing. Vibrodiagnostics. (Vol. 7, Book 1 of 2). Moscow: Mashinostroenie.
16. Kliuev V. V. (ed.), Sosnin F. R., Kovalev A. V. (2005). Non-destructive testing and diagnostics: handbook. (3rd (revised and supplemented) ed.). Moscow: Mashinostroenie.
17. Svetlitskii V. A., Naraikin O. S. (Eds.). (2005). Problems of applied mechanics, dynamics and strength of machines: collection of articles. Moscow: Izdatel'stvo MGTU im. N. E. Baumana.
18. Ser'eznov A. N., Stepanova L. N., Murav'ev V. V. (2000). Acoustic emission diagnostics of structures. Moscow: Radio i sviaz'.
19. Adams D., Nataraju M. (2002). A nonlinear dynamical systems framework for structural diagnosis and prognosis. International Journal of Engineering Science, 40, pp. 1919 – 1941.
20. Adams D. E., Farrar C. R. (2002). Classifying linear and nonlinear structural damage using frequency domain ARX models. Structural Health Monitoring, 1(2), pp. 185-201.
21. Farrar C. R. (2007). Nonlinear system identification for damage detection. Los Alamos National Lab. Contract DE-AC52-06NA25396. Nov. 2007.
22. Sedmak S., Sedmak A., Arsi M., Tuma J. (2007). An experimental verification оf numerical models for the fracture and fatigue of welded structures. Materials and Тechnology, 41(4), pp. 173 – 178.
23. Structural INTegrity Assessment Procedure: Final Report. (2007). SINTAP.

 

 

This article  is available in electronic format (PDF).

The cost of a single article is 250 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

{jform=2,doi=10.14489/td.2014.01.pp.033-039

 

 

 

 

 

 
Search
Баннер
Rambler's Top100 Яндекс цитирования