Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Архив номеров
19 | 04 | 2024
2015, 10 октябрь (October)

DOI: 10.14489/td.2015.010.pp.017-021

Махсидов В. В., Резников В. А., Шиенок А. М., Иошин Д. В.
ВЫЯВЛЕНИЕ ДЕФЕКТОВ МАТЕРИАЛА С ПОМОЩЬЮ ИНТЕГРИРОВАННЫХ В ЕГО СТРУКТУРУ ВОЛОКОННЫХ БРЭГГОВСКИХ РЕШЕТОК (ОБЗОР)
(с. 17-21)

Аннотация. Опасными и часто встречающимися повреждениями элементов конструкций на основе полимерных композиционных материалов (ПКМ), армированных непрерывными волокнами, являются трещины и расслоения. Данные повреждения могут образовываться и развиваться долгое время внутри материала детали без выхода на ее внешнюю поверхность (внутренние дефекты), оставаясь не заметными при осмотре без применения специального оборудования. Вместе с тем волоконные брэгговские решетки (ВБР) являются перспективной основой датчиков определения деформации и начинают все шире применяться в измерительных системах для различных конструкций, в том числе для целей встроенного контроля. Форма спектра ВБР имеет значительную чувствительность к пространственной неоднородности деформации световода, что делает возможным ее использование для выявления дефектов ПКМ типа несплошности (расслоения и трещины). В данном обзоре представлены результаты работ по способам выявления дефектов ПКМ типа несплошности с помощью интегрированных ВБР.

Ключевые слова:  волоконная брэгговская решетка, дефект, расслоение, трещина, полимерный композиционный материал, встроенный контроль.

 

Makhsidov V.V., Reznikov V.A., Shiyonok A.M., Ioshin D.V.
DETECTION OF DAMAGES IN POLYMER MATRIX OF COMPOSITE MATERIALS WITH EMBEDDED FIBRE BRAGG GRATING SENSORS (A REVIEW)
(pp. 17-21)

Abstract. Cracks and delamination are dangerous and widely detectable damages in structural materials based on polymer matrix composite materials, such as carbon fibre reinforced plastics (CFRP), are. These damages can appear and grow inside CFRP without any observably defects on a surface of the structural materials. They stay undetectable during diagnostic without special equipment. Fibre bragg gratings are attracting much interest as a deformation sensor and begin to be widely used in different measuring systems, especially in structural health monitoring systems. Shape of FBG spectra is very sensitive to nonuniform deformation. This feature allows to apply FBG for detecting material’s defects such as matrix cracks and delamination. The methods of detecting matrix cracks and delamination with FBG are presented in this review.

Keywords: fibre bragg grating, defect, crack, delamination, carbon fibre reinforced plastics, structural health monitoring, FBG, CFRP, SHM.

Рус

В. В. Махсидов, В. А. Резников, А. М. Шиенок, Д. В. Иошин (ФГУП «Всероссийский научно-исследовательский институт авиационных материалов», Москва) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

V. V. Makhsidov, V. A. Reznikov, A. M. Shiyonok, D. V. Ioshin (FSUE “All-Russian Scientific-Research Institute of Aviation Materials”, Moscow) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Каблов Е. Н. Шестой технологический уклад // Наука и жизнь. 2010. № 4. С. 2 – 7.
2. Васильев С. А., Медведков И. О., Королев И. Г. и др. Волоконные решетки показателя преломления и их применение // Квантовая электроника. 2005. Т. 35. № 12. С. 1085 – 1103.
3. Takeda N. Fiber optic sensorbased SHM technologies for aerospace applications in Japan // Proc. SPIE 6933 «Smart Sensor Phenomena, Technology, Networks, and Systems». 2008. doi: 10.1117.776838.
4. Glossop N. D. W., Dubois S., Tsaw W. et al. Optical fibre damage detection for an aircraft composite leading edge // Composites 1990. N 21. P. 71 – 80.
5. Measures R. M., Glossop. N. D. W., Lymer J. et al. Structurally integrated fiber optic damage assessment system for composite materials // Appl. Opt. 1989. N 28. P. 2626 – 2633.
6. Doyle C., Martin A., Liu T. et al. In situ process and condition monitoring of advanced fibrereinforced composite materials using optical sensors // Smart Mater. Struct. 1998. N 7. P. 145 – 158.
7. Park J. W., Ryu C. Y., Kang H. K., Hong C. S. Detection of buckling and crack growth in the delaminated composites using fiber optic sensor // J. Compos. Mater. 2000. N 34. P. 1602 – 1623.
8. Liu K., Ferguson S. M., Measures R. M. Damage detection in composites with embedded fibre optic interferometric sensors // Proc. SPIE. 1989. N 1170. P. 205 – 209.
9. Elvin N., Leung C. K. Y. Feasibility of delamination detection with embedded optical fibers // Proc. SPIE. 1997. N 3041. P. 627 – 634.
10. Crane R. M., Macander A. B. A fiber optic system for damage assessment of FRP composite structures // Naval Engr. J. 1984. V. 96. N 6. P. 52 – 56.
11. Hofer B. Fibre optic damage detection in composite structures // Composites. 1987. N 18. P. 309 – 316.
12. Waite S. R. Use of embedded optical fibre for early fatigue damage detection in composite materials // Composites. 1990. N 21. P. 148 – 154.
13. Tsuda H., Ikeguchi T., Takahashi J., Urabe K. Damage monitoring of carbon fiber reinforced plastics with Michelson interferometric fiberoptic sensors // J. Mater. Sci. 1999. N 34. P. 4163 – 4172.
14. Rippert L., Wevers M., Huffel S. V. Optical and acoustic damage detection in laminated CFRP composite materials // Compos. Sci. Technol. 2000. N 60. P. 2713 – 2724.
15. Sage I., Badcock R., Humberstone L. et al. Triboluminescent damage sensors // Smart Mater. Struct. 1999. N 8. P. 504 – 510.
16. Measures R. M. Advances toward fiber optic based smart structures // Opt. Eng. 1992. N 31. P. 34 – 47.
17. Bhatia V., Schmid C. A., Murphy K. A. et al. Optical fiber sensing technique for edgeinduced and internal delamination detection in composites // Smart Mater. Struct. 1995. N 4. P. 164 – 169.
18. Chang C. C., Sirkis J. Impactinduced damage of laminated graphite/epoxy composites monitored using embedded inline fiber etalon optic sensors // J. Intell. Mater. Syst. Struct. 1997. N 8. P. 829 – 841.
19. Elvin N., Leung C. A novel fiber optic delamination detection scheme: theoretical and experimental feasibility studies // J. Intell. Mater. Syst. Struct. 1999. N 10. P. 314 – 321.
20. LeBlanc M., Huang S. Y., Ohn M., Measures R. M., Guemes A., Othonos A. et al. Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis // Opt. Lett. 1996. N 21. P. 1405 – 1407.
21. Peters K., Pattis P., Botsis J., Giaccari P. Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields // Opt. Laser Eng. 2000. N 33. P. 107 – 119.
22. Torres P., Valente L. C. G. Spectral response of locally pressed fiber Bragg grating // Optics Communications. 2002. N 208. P. 285 – 291.
23. Takeda S., Okabe Y., Takeda N. Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors // Composites: Part A. 2002. N 33. P. 971 – 980.
24. Takeda S., Okabe Y., Yamamoto T., Takeda N. Detection of edge delamination in CFRP laminates under cyclic loading using small-diameter FBG sensors // Composites Science and Technology. 2003. N 63. P. 1885 – 1894.
25. Takeda S., Minakuchi S., Okabe Y., Takeda N. Delamination monitoring of laminated composites subjected to lowvelocity impact using small-diameter FBG sensors // Composites: Part A. 2005. N 36. P. 903 – 908.
26. Hang – yin Ling, Kintak Lau, Li Cheng, Zhongqing Su. Mode II fracture behaviour monitoring for composite laminates using embedded fibre Bragg grating sensors // Composite Structures. 2006. N 76. P. 88 – 93.
27. Takeda S., Yamamoto T., Okabe Y., Takeda N. Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors // Smart Mater. Struct. 2007. N 16. P. 763 – 770.
28. Yoji Okabe, Shigeki Yashiro, Tatsuro Kosaka, Nobuo Takeda. Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors // Smart Mater. Struct. 2000. N 9. P. 832 – 838.
29. Yoji Okabe, Tadahito Mizutani, Shigeki Yashiro, Nobuo Takeda. Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors // Composites Science and Technology. 2002. N 62. P. 951 – 958.
30. Tadahito Mizutani, Yoji Okabe, Nobuo Takeda. Quantitative evaluation of transverse cracks in carbon fiber reinforced plastic quasi-isotropic laminates with embedded small-diameter fiber Bragg grating sensors // Smart Mater. Struct. 2003. N 12. P. 898 – 903.

Eng

1. Kablov E. N. (2010). Sixth technological order. Nauka i zhizn'. (4), pp. 2-7.
2. Vasil'ev S. A., Medvedkov I. O., Korolev I. G. et al. (2005). Fiber grating of refractive index and its application. Kvantovaia elektronika. 35(12), pp. 1085-1103.
3. Takeda N. (2008). Fiber optic sensorbased SHM technologies for aerospace applications in Japan. Proc. SPIE 6933 «Smart Sensor Phenomena, Technology, Networks, and Systems». doi: 10.1117/12.776838
4. Glossop N. D. W., Dubois S., Tsaw W. et al. (1990). Optical fibre damage detection for an aircraft composite leading edge. Composites, (21), pp. 71-80.
5. Measures R. M., Glossop. N. D. W., Lymer J. et al. (1989). Structurally integrated fiber optic damage assessment system for composite materials. Appl. Opt., (28), pp. 2626-2633.
6. Doyle C., Martin A., Liu T. et al. (1998). In situ process and condition monitoring of advanced fibrereinforced composite materials using optical sensors. Smart Mater. Struct, (7), pp. 145-158.
7. Park J. W., Ryu C. Y., Kang H. K., Hong C. S. (2000). Detection of buckling and crack growth in the delaminated composites using fiber optic sensor. J. Compos. Mater., (34), pp. 1602-1623.
8. Liu K., Ferguson S. M., Measures R. M. (1989). Damage detection in composites with embedded fibre optic interferometric sensors. Proc. SPIE, (1170), pp. 205-209.
9. Elvin N., Leung C. K. Y. (1997). Feasibility of delamination detection with embedded optical fibers. Proc. SPIE, (3041), pp. 627-634.
10. Crane R. M., Macander A. B. (1984). A fiber optic system for damage assessment of FRP composite structures. Naval Engr. J. 96(6), pp. 52-56.
11. Hofer B. (1987). Fibre optic damage detection in composite structures. Composites, (18), pp. 309-316.
12. Waite S. R. (1990). Use of embedded optical fibre for early fatigue damage detection in composite materials. Composites. (21), pp. 148-154.
13. Tsuda H., Ikeguchi T., Takahashi J., Urabe K. (1999). Damage monitoring of carbon fiber reinforced plastics with Michelson interferometric fiberoptic sensors. J. Mater. Sci. (34), pp. 4163-4172.
14. Rippert L., Wevers M., Huffel S. V. (2000). Optical and acoustic damage detection in laminated CFRP composite materials. Compos. Sci. Technol, (60), pp. 2713-2724.
15. Sage I., Badcock R., Humberstone L. et al. (1999). Triboluminescent damage sensors. Smart Mater. Struct, (8), pp. 504-510.
16. Measures R. M. (1992). Advances toward fiber optic based smart structures. Opt. Eng. (31), pp. 34-47.
17. Bhatia V., Schmid C. A., Murphy K. A. et al. (1995). Optical fiber sensing technique for edgeinduced and internal delamination detection in composites. Smart Mater. Struct. (4), pp. 164-169.
18. Chang C. C., Sirkis J. (1997). Impactinduced damage of laminated graphite/epoxy composites monitored using embedded inline fiber etalon optic sensors. J. Intell. Mater. Syst. Struct., (8), pp. 829-841.
19. Elvin N., Leung C. (1999). A novel fiber optic delamination detection scheme: theoretical and experimental feasibility studies. J. Intell. Mater. Syst. Struct., (10), pp. 314-321.
20. LeBlanc M., Huang S. Y., Ohn M., Measures R. M., Guemes A., Othonos A. et al. (1996). Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Opt. Lett. (21), pp. 1405-1407.
21. Peters K., Pattis P., Botsis J., Giaccari P. (2000). Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields. Opt. Laser Eng. (33), pp. 107-119.
22. Torres P., Valente L. C. G. (2002). Spectral response of locally pressed fiber Bragg grating. Optics Communications, (208), pp. 285-291. doi: 10.1016/s0030-4018(02)01567-5.
23. Takeda S., Okabe Y., Takeda N. (2002). Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors. Composites: Part A, (33), pp. 971-980.
24. Takeda S., Okabe Y., Yamamoto T., Takeda N. (2003). Detection of edge delamination in CFRP laminates under cyclic loading using small-diameter FBG sensors. Composites Science and Technology. (63), pp. 1885- 1894. doi: 10.1016/S0266-3538(03)00159-3
25. Takeda S., Minakuchi S., Okabe Y., Takeda N. (2005). Delamination monitoring of laminated composites subjected to lowvelocity impact using small-diameter FBG sensors. Composites: Part A. (36), pp. 903-908. doi: 10.1016/j.compositesa.2004.12.005
26. Hang – yin Ling, Kintak Lau, Li Cheng, Zhongqing Su. (2006). Mode II fracture behavior monitoring for composite laminates using embedded fibre Bragg grating sensors. Composite Structures, (76), pp. 88-93.
27. Takeda S., Yamamoto T., Okabe Y., Takeda N. (2007). Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors. Smart Mater. Struct., (16), pp. 763-770. doi: 10.1088/0964-1726/16/3/025
28. Yoji Okabe, Shigeki Yashiro, Tatsuro Kosaka, Nobuo Takeda. (2000). Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Mater. Struct., (9), pp. 832-838.
29. Yoji Okabe, Tadahito Mizutani, Shigeki Yashiro, Nobuo Takeda. (2002). Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors. Composites Science and Technology, (62), pp. 951-958. doi: 10.1016/S0266-3538(02)00009-X
30. Tadahito Mizutani, Yoji Okabe, Nobuo Takeda. (2003). Quantitative evaluation of transverse cracks in carbon fiber reinforced plastic quasi-isotropic laminates with embedded small-diameter fiber Bragg grating sensors. Smart Mater. Struct. (12), pp. 898 – 903. doi: 10.1088/0964-1726/12/6/006.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

Форма заказа статьи



Дополнительно для юридических лиц:


Type the characters you see in the picture below



.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

Purchase digital version of a single article


Type the characters you see in the picture below



 

 

 

 

 

.

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 22 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Баннер
Rambler's Top100 Яндекс цитирования