Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Текущий номер
29 | 03 | 2024
2021, 08 август (August)

DOI: 10.14489/td.2021.08.pp.044-050

Булаев И. Ю., Кулибаба А. Я., Силин А. С.
ОТБРАКОВКА ПОТЕНЦИАЛЬНО НЕНАДЕЖНЫХ СБИС ПО ТЕРМОЧУВСТВИТЕЛЬНЫМ ПАРАМЕТРАМ
(с. 44-50)

Аннотация. Рассмотрены варианты диагностического неразрушающего контроля СБИС по параметру теплового сопротивления кристалл–корпус: неразрушающее измерение теплового сопротивления, акустическая микроскопия и статистический анализ термочувствительных параметров (ТЧП). Представлен способ отбраковки потенциально ненадежных СБИС, основанный на контроле ТЧП по ужесточенным нормам.

Ключевые слова:  диагностический, неразрушающий, контроль, СБИС.

 

Bulaev I. Yu., Koulibaba A. Ya., Silin A. S.
DETECTION OF POTENTIALLY UNRELIABLE VLSI BASED ON THE ANALYSIS OF TEMPERATURE-SENSITIVE PARAMETERS
(pp. 44-50)

Abstract. The paper discusses methods for non-destructive diagnostic testing of very large scale integration circuits (VLSI) based on the “junction-case” thermal resistance parameter. This parameter is important because VLSI’s failure rate depends on junction temperature, which in turn depends on thermal resistance “junction-case”. There are three known methods for detecting potentially unreliable VLSIs with increased thermal resistance value: 1) non-destructive measurement of thermal resistance; 2) scanning acoustic microscopy; 3) an approach based on the statistical analysis of temperature-sensitive electric parameters. The paper presents advantages and disadvantages of each method. Special attention is paid to statistical analysis of temperature-sensitive electric parameters because this method allows detecting of potentially unreliable VLSIs without using expensive equipment. This method does not require changes in existing measurement programs. Electric parameters, which depend on temperature, are temperature-sensitive parameters. These parameters are useful for detecting VLSIs with deviations from the main batch. This allows decreasing of risk of potentially unreliable VLSIs application in high reliable equipment. With the proposed approach the high reliable equipment lifetime can be increased.

Keywords: diagnostic, non-destructive, testing, VLSI.

Рус

И. Ю. Булаев, А. Я. Кулибаба, А. С. Силин (АО «Российские космические системы», Москва, Россия) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

I. Yu. Bulaev, A. Ya. Koulibaba, A. S. Silin (Joint Stock Company “Russian Space Systems”, Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Рус

1. ГОСТ Р 56648. База электронная компонентная для ракетно-космической техники. Входной контроль и дополнительные испытания. Общие положения. М.: Стандартинформ, 2016.
2. ГОСТ Р 57394–2017. Микросхемы интегральные и приборы полупроводниковые. Методы ускоренных испытаний на безотказность. М.: Стандартинформ, 2017.
3. C8051F120. URL: https://www.silabs.com/download/public/data-sheets/C8051F12x-13x.pdf
4. Евдокимова Н. Л., Долгов В. В., Моторин А. Ю. Определение теплопроводности материалов, исполь-зуемых в производстве полупроводниковых приборов // Электронная техника. Сер. 2. Полупроводниковые приборы. 2017. Вып. 1(244). С. 45 – 52.
5. Сергеев В. А., Фролов И. В. Алгоритм идентификации параметров тепловых схем полу-проводниковых приборов по частотным зависимостям теплового импеданса // Автоматизация процессов управления. 2014. № 4(38). С. 48 – 54.
6. ESCC Basic Specification № 25200. Application of scanning acoustic microscopy to plastic encapsulated devices / European Space Agency, 2010.
7. MIL-STD-883. Test method standard for microcircuits. 2004.
8. J-STD-020. Moisture / reflow sensitivity classification for nonhermetic solid state surface mount devices, 2015.
9. PEM-INST-001. Instructions for plastic encapsulated microcircuit (PEM) selection, screening and qualification / NASA/TP–2003–212244, 2003.
10. Булаев И. Ю. Подход к обнаружению внутренних дефектов КМОП-микросхем // Ракетно-космическое приборостроение и информационные системы. 2018. Т. 5, вып. 1. С. 93 – 99.
11. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. М.: Наука, 1983.

Eng

1. Electronic component base for rocket and space technology. Incoming inspection and additional tests. General Provisions. (2016). Ru Standard No. GOST R 56648. Moscow: Standartinform. [in Russian language]
2. Integrated microcircuits and semiconductor devices. Accelerated Test Methods for Reliability. (2017). Ru Standard No. GOST R 57394–2017. Moscow: Standartinform. [in Russian language]
3. Available at: www.silabs.com/download/public/data-sheets/C8051F12x-13x.pdf
4. Evdokimova N. L., Dolgov V. V., Motorin A. Yu. (2017). Determination of thermal conductivity of materials used in the manufacture of semiconductor devices. Elektronnaya tekhnika. Seriya 2. Poluprovodnikovye pribory, 244(1), pp. 45 – 52. [in Russian language]
5. Sergeev V. A., Frolov I. V. (2014). Algorithm for identification of parameters of thermal circuits of semiconductor devices by frequency dependences of thermal impedance. Avtomatizatsiya protsessov upravleniya, 38(4), pp. 48 – 54. [in Russian language]
6. Application of scanning acoustic microscopy to plastic encapsulated devices. (2010). ESCC Basic Specification № 25200. European Space Agency.
7. Test method standard for microcircuits. (2004). Standard No. MIL-STD-883.
8. Moisture / reflow sensitivity classification for nonhermetic solid state surface mount devices. (2015). Standard No. J-STD-020.
9. Instructions for plastic encapsulated microcircuit (PEM) selection, screening and qualification. (2003). Joint Industry Standard No. NASA/TP–2003–212244. Recommended instruction No. PEM-INST-001.
10. Bulaev I. Yu. (2018). An approach to detecting internal defects in CMOS microcircuits. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, Vol. 5, (1), pp. 93 – 99. [in Russian language]
11. Bol'shev L. N., Smirnov N. V. (1983). Mathematical statistics tables. Moscow: Nauka. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 450 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/td.2021.08.pp.044-050

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2021.08.pp.044-050

and fill out the  form  

 

.

 

 
Поиск
На сайте?
Сейчас на сайте находятся:
 15 гостей на сайте
Опросы
Понравился Вам сайт журнала?
 
Баннер
Rambler's Top100 Яндекс цитирования