Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
| Русский Русский | English English |
Главная Current Issue
07 | 12 | 2021
2021, 09 September

DOI: 10.14489/td.2021.09.pp.056-061

Vorobyev S. V., Putera A. E., Kryukov O. V.
(pp. 56-61)

Abstract. Typical methods of analysis of insulation parameters and processes of degradation of protective properties of windings of current-carrying parts of power transformers, electric machines, apparatuses and other electrical equipment are considered. It is shown that almost all insulation materials (oil, plastics, paper) are subject to moisture and contamination by their decomposition products under the influence of various external factors. In order to detect these defects in dynamics in a timely manner and to prevent sudden breakdowns of electrical insulation, periodic monitoring and testing of insulation is carried out. The analysis of traditional methods of testing and evaluating the state of isolation of transformers by applying a constant voltage is presented. The main causes and errors of changing the insulation parameters during temperature fluctuations are revealed. A new methodology for analyzing the measurement of the frequency characteristics of dielectrics is proposed, which makes it possible to adequately and accurately transform the results of the evaluation of insulation parameters in the frequency range as a function of temperature. The results of the research are implemented in systems and devices for complex diagnostics of substation equipment transformers.

Keywords: transformer, DC diagnostics, winding isolation, system, device, parameter measurement method, frequency characteristics of dielectrics.

S. V. Vorobyev, A. E. Putera, O. V. Kryukov (TSN-electro LLC, Nizhny Novgorod, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Serebryakov A. S. (2013). Transformers: a textbook. Moscow: Izdatel'skiy dom MEI. [in Russian language]
2. Kryukov O. V. (2016). Monitoring of the operating conditions of the electrical equipment of the GPU. Kontrol'. Diagnostika, (12), pp. 50 – 58. [in Russian language] DOI: 10.14489/td.2016.12.pp.050-058
3. Stepanov S. E., Serebryakov A. V. (2017). Modern approach to the organization of repairs according to the forecast of the technical condition and resource of electrical equipment. Gazovaya promyshlennost', 756(8), pp. 84 – 89. [in Russian language]
4. Vasenin A. B., Kryukov O. V. (2017). Energy efficient and environmentally friendly air cooling units. Velikie reki' 2017: Proceedings of the Scientific Congress of the 19th MNPF, pp. 93 – 96. Nizhniy Novgorod: NGASU. [in Russian language]
5. Kryukov O. V. (2013). Synthesis and analysis of electrical equipment for compressor stations under stochastic disturbances. Elektrotekhnika, (3), pp. 22 – 27. [in Russian language]
6. Kryukov O. V., Serebryakov A. V. (2017). Energy efficient power supply systems of oil and gas pipelines electric drives. Bulletin of South Ural State University. Series: Power Engineering, Vol. 17, (3), pp. 102 – 110.
7. Kryukov O. V., Gulyaev I. V., Teplukhov D. Y. (2019). Method for stabilizing the operation of synchronous machines using a virtual load sensor. Russian Electrical Engineering, Vol. 90, (7), pp. 473 – 478.
8. Serebryakov A. V. (2016). Active-adaptive algorithms for control and monitoring of autonomous energy complexes. Prom-Engineering. Proceedings of the II MNTK, pp. 286 – 290. Chelyabinsk: YuUrGU. [in Russian language]
9. Kryukov O. V. (2012). Methodology and means of neuro-fuzzy forecasting of the state of the electrical equipment of the GPU. Elektrotekhnika, (9), pp. 52 – 60. [in Russian language]
10. Leonov V. P., Fedorov O. V. (1987). The use of microprocessor technology in loading devices. Dvigatelestroenie, (7), pp. 37 – 43. [in Russian language]
11. Kryukov O. V. (2016). Automated loading device for complex tests of piston engines. Dvigatelestroenie, (2), pp. 30 – 35. [in Russian language]
12. Belousov A. S., Meshcheryakov V. N., Valtchev S. (2019). Development of a control algorithm for three-phase inverter in two-phase electric drives reducing the number of commutations. Proceedings of the 1st International Conference on Control Systems, Mathematic. Modell., Automation and Energy Efficiency, pp. 444 – 449.
13. Serebryakov A. V., Makridenko L. A., Volkov S. N. et al. (2017). Monitoring and forecasting the technical state of electrical power systems. Moscow: VNIIEM. [in Russian language]
14. Voronkov V. I., Rubtsova I. E. (2010). Power supply and electrical equipment for linear consumers of MG. Gazovaya promyshlennost', (3), pp. 32 – 37. [in Russian language]
15. Meshcheryakov V. N., Lastochkin D. V. (2017). Applications of the theory of fuzzy sets for data processing and forecasting problems in AED systems. Modern complex control systems: Materials of the XII MNPK, pp. 153 – 158. Lipetsk. [in Russian language]
16. Repin D. G. (2017). Concepts of the system for monitoring the technical condition of compressor stations. Kontrol'. Diagnostika, (12), pp. 30 – 35. [in Russian language] DOI: 10.14489/td.2017.12.pp.030-035
17. Aleev A. P. (2018). The Evolution of Insulation Testing: From Insulation Resistance to Frequency Methods. Presentation of LLC "MEGGER". NTS PAO Gazprom. Section: Energy. Nizhniy Novgorod. [in Russian language]
18. Vasenin A. B., Stepanov S. E. (2019). Methodology and tools for on-line monitoring of electric motors at the compressor station. Kontrol'. Diagnostika, (11), pp. 52 – 58. [in Russian language] DOI: 10.14489/td.2019.11.pp.052-058
19. Blagodarov D. A., Dulnev N. N. Safonov Y. M., Fedortsov N. N., Kostin A. A. (2018). Intelligent control of electric machine drive systems. 10th International Conference on Electrical Power Drive Systems: Conference Proceedings. Novocherkassk.
20. Kopylov I. P., Sonin Yu. P., Gulyaev I. V., Nikulin V. V. (1999). Contactless asynhronized synchronous motor. Russian Electrical Engineering, Vol. 70, (9), pp. 35 – 41.
21. Gruzdev V. V., Volkov A. S. (2021). Methodological approach to predicting the technical condition of switchgear transformers. Avtomatizatsiya i IT v energetike, 138(1), pp. 14 – 19. [in Russian language]
22. Shcherbakov M. A. (Ed.), Stepanov S. E. (2013). Modernization of EGPU control systems in the conditions of operating compressor stations. Problems of automation and control in technical systems: collection of articles MNTK, pp. 29 – 32. Penza. [in Russian language]
23. Kryukov O. V. (2005). Fast Walsh transform algorithms in microprocessor control systems. Izvestiya vuzov. Elektromekhanika, (4), pp. 39 – 44. [in Russian language]
24. Kononenko A. B., Kosorotov A. A. (2020). Expansion of the functionality of automation and monitoring of switchgears of KTP "Kaskad". Avtomatizatsiya i IT v energetike, (12), pp. 26 – 31. [in Russian language]

This article  is available in electronic format (PDF).

The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:


and fill out the  form  



Rambler's Top100 Яндекс цитирования