Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
30 | 04 | 2025
2025, 04 April

DOI: 10.14489/td.2025.04.pp.013-022

Denisov E. S., Evdokimov Yu. K., Shindor O. V., Konkov K. V.
HYDROGEN FUEL CELL IMPEDANCE ESTIMATION BASED ON WAVELET TRANSFORM
(pp. 13-22)

Abstract. Improving the efficiency and reliability of Proton Exchange Membrane Fuel Cells requires the development of on-line monitoring and diagnostics means. In the paper a method of electrochemical impedance estimation based on continuous wavelet transformation using Morse wavelet is proposed. The advantage of this approach is the possibility for better matching the probing signals and the impedance frequency characteristics under consideration from the point of view of frequency-time resolution. The high precision the frequency characteristics of impedance estimation in the frequency range of 0.1…100 Hz is achieved using a probing signal in the form of rectangular pulses with a total duration 2…10 s. It is established that sequences of rectangular pulses and other signals with similar spectral composition can be used as a probing signal. The analysis of influence the measuring equipment’s intrinsic noise on the accuracy of impedance estimation was carried out. The results of the analysis showed that is possible to implement an evaluation system on commercially available measuring amplifiers. The practical significance of the obtained results is the possibility of extending the functional and operational characteristics of the methods and devices of impedance monitoring of proton exchange membrane fuel cells when using both natural and artificial perturbations of the electrical operation mode of the fuel cell operation at a priori unknown moments of time.

Keywords: hydrogen fuel cell, electrochemical impedance, broadband signal, wavelet analysis, morse wavelet, intrinsic noise of measuring equipment.

E. S. Denisov, Yu. K. Evdokimov (Kazan National Research Technical University named after A. N. Tupolev ‒ KAI, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
O. V. Shindor (Kazan (Volga region) Federal University, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
K. V. Konkov (Kazan National Research Technical University named after A. N. Tupolev ‒ KAI, Kazan, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

1. Yuan X., Wang H., Colin Sun J., Zhang J. (2007). AC Impedance Technique in PEM Fuel Cell Diagnosis: A Review. International Journal of Hydrogen Energy, Vol. 32 17, 4365 ‒ 4380.
2. Nasser-Eddine A., Huard B., Gabano J.-D. et al. (2020). Fast Time Domain Identification of Electrochemical Systems at Low Frequencies using Fractional Modeling. Journal of Electroanalytical Chemistry, 862.
3. Jianfeng Lv., Kuang J., Zhongliang Yu. et al. (2023). Diagnosis of PEM Fuel Cell System Based on Electrochemical Impedance Spectroscopy and Deep Learning Method. IEEE Transactions on Industrial Electronics, 71(1), 657 ‒ 666.
4. Oldenburger M., Bedürftig B., Gruhle A., et al. (2019). Investigation of the Low Frequency Warburg Impedance of Liion Cells by Frequency Domain Measurements. Journal of Energy Storage, 21.
5. Spielbauer M., Berg P., Ringat M., et al. (2019). Experimental Study of the Impedance Behavior of 18650 Lithiumion Battery Cells under Deforming Mechanical Abuse. Journal of Energy Storage, 26.
6. Shi Y., He W., Xie B., et al. (2023). PEMFC Fault Diagnosis Based on an Equivalent Circuit and OS-ELM Framework. IEEE Transactions on Industry Applications, 60(1), 1277 ‒ 1287.
7. Denisov E. S. (2023). Low-signal electric model of solid polymer hydrogen fuel cell. Yuzhno-Sibirskiy nauchniy vestnik, 49(3), 152 ‒ 158. [in Russian language]
8. Astaf'ev E. A. (2018). Comparison of the method and apparatus of electrochemical impedance with the method of measurement and analysis of electrochemical noise. Elektrohimiya, 54(12), 1044 ‒ 1054. [in Russian language]
9. Denisov E. S., Nikishina G. V., Kon'kov K. V. (2024). Evaluation of the influence of intrinsic noise of measuring equipment in measuring the impedance of hydrogen fuel cells based on broadband probing signals. Yuzhno-Sibirskiy nauchniy vestnik, 54(2), 33 ‒ 39. [in Russian language]
10. Denisov E. S. (2022). Hydrogen Fuel Cell Electrochemical Impedance Measurement System Based on Broadband Probing Signals. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A. N. Tupoleva, 78(1), 92 ‒ 98. [in Russian language]
11. Wang H., Gaillard A., Hissel D. (2019). A Review of DC/DC Converter-Based Electrochemical Impedance Spectroscopy for Fuel Cell Electric Vehicles. Renewable Energy, 141, 124 ‒ 138.
12. Wang H., Gaillard A., Hissel D. (2019). Online Electrochemical Impedance Spectroscopy Detection Integrated with Step-up Converter for Fuel Cell Electric Vehicle. International Journal of Hydrogen Energy, 44(2), 1110 ‒ 1121.
13. Klotz D., Schönleber M., Schmidt J. P., Ivers-Tiffée E. (2011). New Approach for the Calculation of Impedance Spectra out of Time Domain Data. Electrochimica Acta, Vol. 56 24, 8763 ‒ 8769.
14. Alavi S. M., Birki C. R., Hawey D. A. (2015). Timedomain Fitting of Battery Electrochemical Impedance Models. Journal of Power Sources, 288, 345 ‒ 352.
15. Ruan H., Sun B., Jiang J., et al. (2021). A Modified-Electrochemical Impedance Spectroscopy-Based Multi-Time-scale Fractional-Order Model for Lithiumion Batteries. Electrochimica Acta, 394.
16. Denisov E. S., Nikishina G. V., Eniliev R. R., Nikishin T. P. (2023). Implementation peculiarities of method for lithium batteries technical state monitoring based on analysis of relaxation processes caused by load variations. Kontrol'. Diagnostika, Vol. 26 301(7), 36 ‒ 43. [in Russian language]. DOI: 10.14489/td.2023.07.pp.036-043
17. Nusev G., Juričić Đ., Gaberšček M., et al. (2021). Fast Impedance Measurement of Li-ion Battery using Discrete Random Binary Excitation and Wavelet Transform IEEE Access, (9), 46152 ‒ 46165.
18. Steiner N. Y., Hissel D., Moçotéguy Ph., Candusso D. (2011). Non-Intrusive Diagnosis of Polymer Electrolyte Fuel Cells by Wavelet Packet Transform. International Journal of Hydrogen Energy, 36(1), 740 ‒ 746.
19. Shindor O. V., Denisov E. S., Evdokimov Yu. K. (2013). Investigation of the diagnostic capabilities of wavelet transform for the analysis of electrical fluctuations of hydrogen fuel cell. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A. N. Tupoleva, (4), 120 ‒ 124. [in Russian language]
20. Shindor O. V., Denisov E. S., Evdokimov Yu. K. (2011). Prediction of Hydrogen Fuel Cell Operating Modes Based on Wavelet Analysis. Nelineyniy mir, 9(1), 813 ‒ 817. [in Russian language]
21. Ma T., Lin W., Yang Y., et al. (2020). Water Content Diagnosis for Proton Exchange Membrane Fuel Cell Based on Wavelet Transformation. International Journal of Hydrogen Energy, Vol. 45(39), 20339 ‒ 20350.
22. Astaf'eva N. M. (1996). Wavelet Analysis: Basic Theory and Application Examples. Uspekhi fizicheskih nauk, 166(11), 1145 – 1170. [in Russian language]
23. Flandrin P. (1999). Time-Frequency/Time-Scale Analysis. San Diego: Wavelet Analysis and its Applications. (10). Academic Press. Retrived from http://www.academicpress.com/
24. Iatsenko D., McClintock P. V. E., Stefanovska A. (2015). Nonlinear Mode Decomposition: A Noise-Robust, Adaptive decomposition Method. Physical Review E, 92, 032916 ‒ 032941.
25. Daubechies I. (1992). Ten Lectures on Wavelets. Philadelphia: SIAM.
26. Kon'kov K. V. (2023). Study of the possibility of estimating the spectral characteristics of signals using wavelet transform. XXVI Tupolev Readings: collection of reports, 3556 ‒ 3560. Kazan: IP Sagiev A. R. [in Russian language]
27. Martinez-Ríos E. A., Bustamante-Bello R., Navarro-Tuch S., Perez-Meana H. (2023). Applications of the Generalized Morse Wavelets: A Review. IEEE Access, (11), 667 ‒ 688.
28. Lilly J. M., Olhede S. C. (2012). Generalized Morse Wavelets as a Superfamily of Analytic Wavelets. IEEE Transactions on Signal Processing, 60.
29. Lilly J. M., Olhede S. C. (2010). On the Analytic Wavelet Transform. IEEE Transactions on Information Theory, 56(8).

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.04.pp.013-022

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования