Журнал Российского общества по неразрушающему контролю и технической диагностике
The journal of the Russian society for non-destructive testing and technical diagnostic
 
| Русский Русский | English English |
 
Главная Current Issue
30 | 04 | 2025
2025, 04 April

DOI: 10.14489/td.2025.04.pp.055-060

Belyakov M. V.
PHOTOLUMINESCENT QUALITY CONTROL OF AGRICULTURAL PRODUCTS
(pp. 55-60)

Abstract. The possibilities of optical photoluminescent control of agricultural products (grain, vegetable feed, milk) are investigated. Methods and devices for monitoring the moisture content of seeds and concentrated feeds have been developed. Based on the measurement of the luminescence ratio when excited by radiation of 362 and 485 nm, a method for assessing the degree of ripeness of seeds of grain plants has been created. Using luminescent fluxes at excitation of 232, 362 and 424 nm, a method and a portable device (LUM VIM-1) for determining grain contamination with fusarium have been created. When milk sours, quantitative and qualitative changes in luminescent properties occur. To create a method for monitoring milk quality indicators during souring, the most informative is the use of excitation wavelengths of 385 nm and 442 nm, followed by registration of photoluminescence in the ranges 440…490 nm and 490…600 nm, respectively.

Keywords: optical spectral diagnostics, photoluminescence, seeds of grain plants, vegetable feed, milk.

M. V. Belyakov (Federal State Budgetary Budgetary Institution "Federal Scientific Agroengineering Center of VIM", Moscow, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

1. Lobachevsky Ya. P., Dorokhov A. S. (2021). Digital Technologies and Robotic Technical Means for Agriculture. Sel'skohozjajstvennye mashiny i tehnologii, 15(4), 6 – 10 [in Russian language]
2. Makmuang S., Nootchanat S., Ekgasit S., Wongravee K. (2021). Non-destructive method for discrimination of weedy rice using near infrared spectroscopy and modified selforganizing maps (SOMs). Computers and Electronics in Agriculture, 191.
3. Tsakanikas P., Fengou L.-C., Manthou E., Lianou A., Panagou E. Z., Nychas G. E. (2018). A unified spectra analysis workflow for the assessment of microbial contamination of ready-to-eat green salads: Comparative study and application of non-invasive sensors. Computers and Electronics in Agriculture, 155, 212 – 219.
4. Acosta J., Castillo M.S., Hodge G.R. (2020). Comparison of benchtop and handheld nearinfrared spectroscopy devices to determine forage nutritive value. Crop Science, 60, 3410 – 3422.
5. Zhou L., Zhang C., Taha M. F., Qiu Z., He Y. (2021). Determination of leaf water content with a portable NIRS system based on deep learning and information fusion analysis. Transactions of the ASABE, 64(1), 127 – 135.
6. Buelvas R. M., Adamchuk V. I., Leksono E., Tikasz P., Lefsrud M., Holoszkiewicz J. (2019). Biomass estimation from canopy measurements for leafy vegetables based on ultrasonic and laser sensors. Computers and Electronics in Agriculture, 164.
7. Tugnolo A., Giovenzana V., Beghi R., Grassi S., Alamprese C., Casson A., Casiraghi E., Guidetti R. (2021). A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system. Computers and Electronics in Agriculture, 180.
8. Beljakov M. V. (2015). Typical spectral characteristics of plant seeds. Estestvennye i tehnicheskie nauki, 11, 521 – 525. [in Russian language]
9. Beljakov M. V., Efremenkov I. Yu. (2022). Development of a technological process and a device for remote control of seed ripeness. Elektrotekhnologii i elektrooborudovanie v APK, Vol. 69 47(2), 12 – 19. [in Russian language]
10. Beljakov M. V., Samarin G. N., Kudrjavcev A. A., Efremenkov I. Ju. (2022). Changes in the spectral photoluminescent properties of milk during souring. Inzhenernye tehnologii i sistemy, 32(3), 460 – 475. [in Russian language]
11. Mahlein A.-K., Alisaac E., Al Masri A., Behmann J., Dehne H.-W., Oerke E.-C. (2019). Comparison and Combination of Thermal, Fluorescence and Hyperspectral Imaging for Monitoring Fusarium Head Blight of Wheat on Spikelet Scale. Sensors, 19(10).
12. Zhang N., Pan Y., Feng H., Zhao X., Yang X., Ding C., Yang G. (2019). Development of Fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets. Biosystems Engineering, 186.

This article  is available in electronic format (PDF).

The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/td.2025.04.pp.055-060

and fill out the  form  

 

 

 
Search
Rambler's Top100 Яндекс цитирования