| 2025, 11 November |
|
DOI: 10.14489/td.2025.11.pp.045-053 Yudaev V. A., Balabanov P. V., Grebennikova N. M., Divin A. G., Egorov A. S., Lyubimova D. A. Abstract. The paper proposes a technique for diagnosing damage to plant tissues of the Spartak sunflower variety caused by a reaction to the herbicide tribenuron-methyl. Diagnostics is based on the analysis of hyperspectral images of control objects obtained in the wavelength range from 350 to 1002 nm. The technique involves collecting and analyzing hyperspectral images at growth stages. An information-measuring system based on the Cubert X20 Plus camera was used to obtain hyperspectral images. As a result of analyzing the obtained images using the PCA method, informative wavelengths of 502, 670, 718, 770 and 930 nm were determined. Using machine learning methods such as linear discriminant analysis, random forest, logistic regression, k-nearest neighbors (kNN) and SVM, machine learning models were obtained for classifying objects in the camera's field of view by category. To select the optimal model, a complex quality indicator was used, including two criteria ‒ time and quality of classification. An optimal machine learning model obtained on the basis of linear discriminant analysis is determined. Keywords: hyperspectral images, non-destructive control, herbicide injuries, crops, sunflower, classification, models, machine learning, information and measuring system.
V. A. Yudaev, P. V. Balabanov, N. M. Grebennikova, A. G. Divin, A. S. Egorov, D. A. Lyubimova (Tambov State Technical University, Tambov, Russia) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра. , Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.
1. Ye, W., Yan, T., Zhang, C., et al. (2022). Detection of pesticide residue level in grape using hyperspectral imaging with machine learning. Foods, 11, 1–16. https://doi.org/10.3390/foods11111609
This article is available in electronic format (PDF). The cost of a single article is 700 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank. After depositing your payment on our bank account we send you file of the article by e-mail. To order articles please copy the article doi: 10.14489/td.2025.11.pp.045-053 and fill out the
|
Current Issue

Разработка концепции и создание сайта - ООО «Издательский дом «СПЕКТР»